Form No. T611

Student Name:

Student Number:
Dept. of Electrical Engineering
Final Exam, Second Semester: 2018/2019
Course Title: Electromagnetics I
Date: 2/6/2019
Course No: (610213)
Time Allowed: 2 Hours
Lecturer: Dr. Mohammad Abu-Naser No. of Pages: 7

Question 1:

(40Mark)
Objectives: This question is related to multiple choices

1) The force between two charges separated by a distance r varies as
a) r^{2}
b) r
c) $1 / r$
(d) $1 / r^{2}$
2) The relative permittivity of air is
a) 0
(b) 1
c) 8.85×10^{-12}
d) none of the above
3) The absolute permittivity of air is
a) 0
b) 1
(c) 8.85×10^{-12}
d) none of the above
4) Electric field lines enter or leave a conducting surface at an angle
(a) of 90°
b) of 30°
c) of 60°
d) of 0°
5) A unit charge moves on an equipotential surface from point A to point B.

Then,
(a) $V_{A}=V_{B}$
b) $\mathrm{V}_{\mathrm{A}}>\mathrm{V}_{\mathrm{B}}$
c) $\mathrm{V}_{\mathrm{A}}<\mathrm{V}_{\mathrm{B}}$
d) none of the above
6) The absolute permeability of air is
a) $10^{6} \mathrm{H} / \mathrm{m}$
b) $4 \pi \times 10^{-3} \mathrm{H} / \mathrm{m}$
(C) $4 \pi \times 10^{-7} \mathrm{H} / \mathrm{m}$
d) None of the above
7) Magnetic flux passes more easily through
a) air
b) wood
c) vacuum
(d) iron
8) By increasing the number of turns 3 times in a toroid, the magnetic flux
a) will remain unchanged
(b) will become three times
c) will reduce to one-third
d) none of the above
9) A current is passed through a straight wire. The magnetic field established around it has magnetic lines
(a) circular
b) straight
c) oval
d) none of the above
10) A conductor of length 1 m carrying current of 1 A is placed parallel to a magnetic field of 1 T . The magnetic force acting on the conductor is
(a) zero
b) 1 N
c) 0.5 N
d) 2.5 N
11) A conductor of length 1 m carrying current of 1 A is placed perpendicular to a magnetic field of 1 T . The magnetic force acting on the conductor is
a) zero
(b) 1 N
c) 0.5 N
d) 2.5 N
12) The basic requirement for inducing emf in a coil is that
a) flux should link the coil
(b) there should be change in flux linking the coil
c) coil should form a closed loop
d) none of the above
13) The emf induced in a coil of N turns is given by
a) $\mathrm{d} \varphi / \mathrm{dt}$
b) $\mathrm{dt} / \mathrm{d} \varphi$
(c) $-\mathrm{Nd} \varphi / \mathrm{dt}$
d) $-N d t / d \varphi$
14) Which of the following statements is true
(a) The divergence is performed on a vector and the result is scalar
b) The divergence is performed on a vector and the result is vector
c) The divergence is performed on a scalar and the result is scalar
d) The divergence is performed on a scalar and the result is vector
15) Which of the following statements is true
a) The gradient is performed on a vector and the result is scalar
b) The gradient is performed on a vector and the result is vector
c) The gradient is performed on a scalar and the result is scalar
(d) The gradient is performed on a scalar and the result is vector
16) Two long, straight, parallel conductors separated by a finite distance carrying currents in opposite directions. The magnetic force between them is:
a) Attraction
(b) Repulsion
c) Rotational
d) None
17) A vector $\vec{A}=3 \hat{x}+4 \hat{y}$. The corresponding unit vector \hat{A} is:
(a) $0.6 \hat{x}+0.8 \hat{y}$
b) $\hat{x}+\hat{y}+\hat{z}$
c) $0.12 \hat{x}+0.16 \hat{y}$
d) $0.6 \hat{x}+0.8 \hat{y}+\hat{z}$.
18) $\vec{A}=3 \hat{x}+2 \hat{y}+\hat{z}$ and $\vec{B}=2 \hat{x}+5 \hat{y}+3 \hat{z}$, the dot product $\vec{A} \cdot \vec{B}$ is:
a) 0
b) $6 \hat{x}+10 \hat{y}+3 \hat{z}$
(C) 19
d) $\sqrt{19}$
19) $\vec{A}=\hat{x}+2 \hat{y}$ and $\vec{B}=3 \hat{x}+2 \hat{y}$, the cross product $\vec{A} \times \vec{B}$ is:
(a) $-4 \hat{z}$
b) 0
c) $3 \hat{x}+4 \hat{y}$
d) $8 \hat{z}$
20) Two charges $Q_{1}=10 \mathrm{mC}$ and $Q_{2}=50 \mathrm{mC}$ enclosed by surface S . The net flux that crosses S is:
a) $50 \hat{x} \mathrm{mC}$
b) 0
c) 50 mC
(d) 60 mC

Notes:

Rectangular Coordinates
$\nabla \mathrm{A}=\frac{\partial \mathrm{A}}{\partial \mathrm{x}} \hat{x}+\frac{\partial \mathrm{A}}{\partial \mathrm{y}} \hat{y}+\frac{\partial \mathrm{A}}{\partial \mathrm{z}} \hat{z}$
$\nabla \cdot \vec{A}=\frac{\partial A_{x}}{\partial \mathrm{x}}+\frac{\partial A_{y}}{\partial \mathrm{y}}+\frac{\partial A_{z}}{\partial \mathrm{z}}$
Cylindrical Coordinates
$\nabla \mathrm{A}=\frac{\partial \mathrm{A}}{\partial \mathrm{r}} \hat{r}+\frac{1}{r} \frac{\partial \mathrm{~A}}{\partial \phi} \hat{\phi}+\frac{\partial \mathrm{A}}{\partial \mathrm{z}} \hat{z}$
$\nabla \cdot \vec{A}=\frac{1}{r} \frac{\partial}{\partial \mathrm{r}}\left(r A_{r}\right)+\frac{1}{r} \frac{\partial A_{\phi}}{\partial \phi}+\frac{\partial A_{z}}{\partial \mathrm{z}}$
a) The charge density

$$
\begin{aligned}
e_{v}=\nabla \cdot \vec{D} & =\frac{\partial D_{x}}{\partial x}+\frac{\partial D y}{\partial y}+\frac{\partial D_{z}}{\partial z} \\
& =8 y+0 \\
& =8 y \mathrm{c} / \mathrm{m}^{3}
\end{aligned}
$$

b) The total charge stored in the region $0<x<1,0<y<1,0<z<1$

$$
\begin{aligned}
Q & =\iiint_{0} \operatorname{P}_{r} d v \\
& =\int_{x=0}^{1} \int_{y=0}^{1} \int_{z=0}^{1} 8 y d x d y d z \\
& =\left.\left.x\right|_{0} ^{1} z\right|_{0} ^{1} \frac{\left.8 y^{2}\right|_{0} ^{1}}{2} \\
& =1 \times 1 \times 4\left(1^{2}-0^{2}\right) \\
& =4 \mathrm{C}
\end{aligned}
$$

Objectives: This question is related to electrostatic relationships
For the following electric potential $V=x^{2}+2 y^{2}+4 z^{2} \mathrm{~V}$, determine:
a) The electric field

$$
\begin{aligned}
\vec{E}=-\nabla V & =-\frac{\partial V}{\partial x} \hat{x}-\frac{\partial V}{\partial y} \hat{y}-\frac{\partial V}{\partial z} \hat{z} \\
& =-2 x \hat{x}-4 y \hat{y}-8 z \hat{z} \quad V / m
\end{aligned}
$$

b) The energy within the region $0<x<1,0<y<1,0<z<1$

$$
\begin{aligned}
W & \left.=\frac{1}{2} \varepsilon_{0} \iiint_{\mid} \right\rvert\, E_{1}^{2} d v \\
& =\frac{1}{2} \varepsilon_{0} \int_{x=0}^{1} \int_{y=0}^{1} \int_{z=0}\left(4 x^{2}+16 y^{2}+64 z^{2}\right) d x d y d z \\
& =\frac{1}{2} \varepsilon_{0}\left[\left.\left.\left.\frac{4 x^{3}}{3}\right|_{0} ^{1} y\right|_{0} ^{1} z\right|_{0} ^{1}+\left.\frac{16 y^{3}}{3}\right|_{0} ^{1} \times\left.\left.\right|_{0} ^{1} z\right|_{0} ^{1}+\left.\frac{64 z^{3}}{3}\right|_{0} ^{1} \times\left.\left.\right|_{0} ^{1} y\right|_{0} ^{1}\right] \\
& =\frac{1}{2} \varepsilon_{0}\left[\frac{4}{3} \times \frac{16}{3}+\frac{64}{3}\right] \\
& =\frac{1}{2} \times 8.85 \times 10^{-12} \times \frac{84}{3} \\
& =1.239 \times 10^{-10} \mathrm{~J}
\end{aligned}
$$

Consider the rectangular loop of dimension $1 \mathrm{~m} \times 2 \mathrm{~m}$ carrying a 4 mA current shown in the following figure. The loop is in a uniform magnetic flux density $\vec{B}=-0.6 \hat{y}+0.8 \hat{z} \mathrm{~T}$
a) Calculate the magnetic moment
b) Calculate the magnetic torque
c) Calculate the angle between the flux density and vector normal to the loop
d) when viewed from the positive x-axis, is the expected direction of rotation clockwise or counterclockwise?
e) Calculate the magnetic flux through the loop
a)

$$
\text { a) } \begin{aligned}
\vec{m} & =I A \hat{n} \\
& =4 \times 10^{-3} \times .2 \times 1 \hat{z} \\
& =8 \times 10^{-3} \hat{z}
\end{aligned}
$$

$$
\begin{aligned}
\text { b) } \begin{aligned}
\vec{T} & =\vec{m} \times \vec{B} \\
& =8 \times 10^{-3} \hat{z} \times(-6 \hat{y}+.8 \hat{z}) \\
& =4.8 \hat{x} \mathrm{mN} \cdot \mathrm{~m} \\
\text { c) } \theta & =\tan ^{-1} \frac{6}{.8}=36.9^{\circ}
\end{aligned} \text { (} r \text {. }
\end{aligned}
$$

d) The direction of rotation is counter clock wise when viewed from the positive x-axis.
e) $\phi=\iint \vec{B} \cdot d \stackrel{\rightharpoonup}{s}$

Since the flux is unitorm

$$
\phi=\overrightarrow{B \cdot A}=(-.6 \hat{y}+.8 \hat{z}) \cdot 2 \hat{z}=1.6 w b
$$

$\stackrel{\text { or }}{=}$

$$
\begin{aligned}
\phi=|B \| A| \cos \theta & =1 \times 2 \times \cos 36.9^{\circ} \\
& =1.6 \mathrm{wb}
\end{aligned}
$$

a) mmf
b) mean path length of the core
c) reluctance of the core
d) magnetic flux
e) magnetic flux density
f) inductance of coil
g) energy stored in the magnetic field

a) $m m f=N I=35 \times .2=7 \mathrm{~A}$.turn
b) $L=(2 \times 5+2 \times 2) \times 10^{-2}=0.14 \mathrm{~m}$
c) $R=\frac{L}{\mu_{\mu} \mu_{r} A}=\frac{0.14}{4 \pi \times 10^{-7} \times 750 \times 15 \times 10^{-6}}=9.9 \times 10^{6} \mathrm{H}^{-1}$
d) $\phi=\frac{m m f}{R}=\frac{7}{9.9 \times 10^{6}}=7.07 \times 10^{-7} \mathrm{~Wb}$
e) $B=\frac{\phi}{A}=\frac{7.07 \times 10^{-7}}{15 \times 10^{-6}}=.0471 \mathrm{~T}$

$$
\text { f) } \begin{aligned}
L=\frac{\lambda}{I}=\frac{N \phi}{I} & =\frac{35 \times 7.07 \times 10^{-7}}{0.2} \\
& =0.1237 \mathrm{mH}
\end{aligned}
$$

g)

$$
\begin{aligned}
W=\frac{1}{2} L I^{2} & =\frac{1}{2} \times .1237 \times 0.2^{2} \\
& =2.474 \mu \mathrm{~J}
\end{aligned}
$$

